Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 330
1.
Cell Rep ; 43(4): 114116, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38625790

Overexpression of Cyclin E1 perturbs DNA replication, resulting in DNA lesions and genomic instability. Consequently, Cyclin E1-overexpressing cancer cells increasingly rely on DNA repair, including RAD52-mediated break-induced replication during interphase. We show that not all DNA lesions induced by Cyclin E1 overexpression are resolved during interphase. While DNA lesions upon Cyclin E1 overexpression are induced in S phase, a significant fraction of these lesions is transmitted into mitosis. Cyclin E1 overexpression triggers mitotic DNA synthesis (MiDAS) in a RAD52-dependent fashion. Chemical or genetic inactivation of MiDAS enhances mitotic aberrations and persistent DNA damage. Mitosis-specific degradation of RAD52 prevents Cyclin E1-induced MiDAS and reduces the viability of Cyclin E1-overexpressing cells, underscoring the relevance of RAD52 during mitosis to maintain genomic integrity. Finally, analysis of breast cancer samples reveals a positive correlation between Cyclin E1 amplification and RAD52 expression. These findings demonstrate the importance of suppressing mitotic defects in Cyclin E1-overexpressing cells through RAD52.


Cyclin E , Genomic Instability , Mitosis , Oncogene Proteins , Rad52 DNA Repair and Recombination Protein , Humans , Cyclin E/metabolism , Cyclin E/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Oncogene Proteins/metabolism , Oncogene Proteins/genetics , DNA Replication , Cell Line, Tumor , DNA Damage , DNA/metabolism , DNA/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology
2.
Nucleic Acids Res ; 52(7): 3794-3809, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38340339

Meiotic recombination is initiated by programmed double-strand breaks (DSBs). Studies in Saccharomyces cerevisiae have shown that, following rapid resection to generate 3' single-stranded DNA (ssDNA) tails, one DSB end engages a homolog partner chromatid and is extended by DNA synthesis, whereas the other end remains associated with its sister. Then, after regulated differentiation into crossover- and noncrossover-fated types, the second DSB end participates in the reaction by strand annealing with the extended first end, along both pathways. This second-end capture is dependent on Rad52, presumably via its known capacity to anneal two ssDNAs. Here, using physical analysis of DNA recombination, we demonstrate that this process is dependent on direct interaction of Rad52 with the ssDNA binding protein, replication protein A (RPA). Furthermore, the absence of this Rad52-RPA joint activity results in a cytologically-prominent RPA spike, which emerges from the homolog axes at sites of crossovers during the pachytene stage of the meiotic prophase. Our findings suggest that this spike represents the DSB end of a broken chromatid caused by either the displaced leading DSB end or the second DSB end, which has been unable to engage with the partner homolog-associated ssDNA. These and other results imply a close correspondence between Rad52-RPA roles in meiotic recombination and mitotic DSB repair.


Crossing Over, Genetic , DNA Breaks, Double-Stranded , Meiosis , Rad52 DNA Repair and Recombination Protein , Replication Protein A , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Rad52 DNA Repair and Recombination Protein/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Replication Protein A/metabolism , Replication Protein A/genetics , Meiosis/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Recombination, Genetic , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Homologous Recombination/genetics
3.
Life Sci Alliance ; 7(3)2024 Mar.
Article En | MEDLINE | ID: mdl-38081641

Homologous recombination (HR) is a DNA repair mechanism of double-strand breaks and blocked replication forks, involving a process of homology search leading to the formation of synaptic intermediates that are regulated to ensure genome integrity. RAD51 recombinase plays a central role in this mechanism, supported by its RAD52 and BRCA2 partners. If the mediator function of BRCA2 to load RAD51 on RPA-ssDNA is well established, the role of RAD52 in HR is still far from understood. We used transmission electron microscopy combined with biochemistry to characterize the sequential participation of RPA, RAD52, and BRCA2 in the assembly of the RAD51 filament and its activity. Although our results confirm that RAD52 lacks a mediator activity, RAD52 can tightly bind to RPA-coated ssDNA, inhibit the mediator activity of BRCA2, and form shorter RAD51-RAD52 mixed filaments that are more efficient in the formation of synaptic complexes and D-loops, resulting in more frequent multi-invasions as well. We confirm the in situ interaction between RAD51 and RAD52 after double-strand break induction in vivo. This study provides new molecular insights into the formation and regulation of presynaptic and synaptic intermediates by BRCA2 and RAD52 during human HR.


Rad51 Recombinase , Replication Protein A , Humans , Replication Protein A/genetics , Replication Protein A/metabolism , Rad51 Recombinase/genetics , DNA, Single-Stranded/genetics , DNA Repair/genetics , Homologous Recombination/genetics , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism
4.
Curr Genet ; 69(4-6): 301-308, 2023 Dec.
Article En | MEDLINE | ID: mdl-37934232

BRCA2 is a tumor-suppressor gene that is normally expressed in the breast and ovarian tissue of mammals. The BRCA2 protein mediates the repair of double-strand breaks (DSBs) using homologous recombination, which is a conserved pathway in eukaryotes. Women who express missense mutations in the BRCA2 gene are predisposed to an elevated lifetime risk for both breast cancer and ovarian cancer. In the present study, the efficiency of human BRCA2 (hBRCA2) in DSB repair was investigated in the budding yeast Saccharomyces cerevisiae. While budding yeast does not possess a true BRCA2 homolog, they have a potential functional homolog known as Rad52, which is an essential repair protein involved in mediating homologous recombination using the same mechanism as BRCA2 in humans. Therefore, to examine the functional overlap between Rad52 in yeast and hBRCA2, we expressed the wild-type hBRCA2 gene in budding yeast with or without Rad52 and monitored ionizing radiation resistance and DSB repair efficiency. We found that the expression of hBRCA2 in rad52 mutants increases both radiation resistance and DSB repair frequency compared to cells not expressing BRCA2. Specifically, BRCA2 improved the protection against ionizing radiation by at least 1.93-fold and the repair frequency by 6.1-fold. In addition, our results show that homology length influences repair efficiency in rad52 mutant cells, which impacts BRCA2 mediated repair of DSBs. This study provides evidence that S. cerevisiae could be used to monitor BRCA2 function, which can help in understanding the genetic consequences of BRCA2 variants and how they may contribute to cancer progression.


Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Animals , Female , Humans , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , DNA Repair/genetics , Genes, BRCA2 , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Genetic Complementation Test
5.
Genes (Basel) ; 14(10)2023 10 05.
Article En | MEDLINE | ID: mdl-37895257

Several sources of DNA damage compromise the integrity and stability of the genome of every organism. Specifically, DNA double-strand breaks (DSBs) can have lethal consequences for the cell. To repair this type of DNA damage, the cells employ homology-directed repair pathways or non-homologous end joining. Homology-directed repair requires the activity of the RAD52 epistasis group of genes. Rad52 is the main recombination protein in the budding yeast Saccharomyces cerevisiae, and rad52Δ mutants have been characterized to show severe defects in DSB repair and other recombination events. Here, we identified the RAD52 gene in the budding yeast Naumovozyma castellii. Our analysis showed that the primary amino acid sequence of N. castellii Rad52 shared 70% similarity with S. cerevisiae Rad52. To characterize the gene function, we developed rad52Δ mutant strains by targeted gene replacement transformation. We found that N. castellii rad52Δ mutants showed lowered growth capacity, a moderately altered cell morphology and increased sensitivity to genotoxic agents. The decreased viability of the N. castellii rad52Δ mutants in the presence of genotoxic agents indicates that the role of the Rad52 protein in the repair of DNA damage is conserved in this species.


Rad52 DNA Repair and Recombination Protein , DNA Repair/genetics , DNA-Binding Proteins/genetics , Genome, Fungal , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism
6.
Nat Commun ; 14(1): 6215, 2023 10 05.
Article En | MEDLINE | ID: mdl-37798272

Homologous recombination (HR) is an essential double-stranded DNA break repair pathway. In HR, Rad52 facilitates the formation of Rad51 nucleoprotein filaments on RPA-coated ssDNA. Here, we decipher how Rad52 functions using single-particle cryo-electron microscopy and biophysical approaches. We report that Rad52 is a homodecameric ring and each subunit possesses an ordered N-terminal and disordered C-terminal half. An intrinsic structural asymmetry is observed where a few of the C-terminal halves interact with the ordered ring. We describe two conserved charged patches in the C-terminal half that harbor Rad51 and RPA interacting motifs. Interactions between these patches regulate ssDNA binding. Surprisingly, Rad51 interacts with Rad52 at two different bindings sites: one within the positive patch in the disordered C-terminus and the other in the ordered ring. We propose that these features drive Rad51 nucleation onto a single position on the DNA to promote formation of uniform pre-synaptic Rad51 filaments in HR.


Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cryoelectron Microscopy , DNA Repair , DNA, Single-Stranded/metabolism , Protein Binding , Rad51 Recombinase/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
7.
Int J Biol Macromol ; 248: 125885, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37473881

DR0041 ORF encodes an uncharacterized Deinococcus lineage protein. We earlier reported presence of DR0041 protein in DNA repair complexes of Ssb and RecA in Deinococcus radiodurans. Here, we systematically examined the role of DR0041 in DNA metabolism using various experimental methodologies including electrophoretic mobility assays, nuclease assays, strand exchange assays and transmission electron microscopy. Interaction between DR0041 and the C-terminal acidic tail of Ssb was assessed through co-expression and in vivo cross-linking studies. A knockout mutant was constructed to understand importance of DR0041 ORF for various physiological processes. Results highlight binding of DR0041 protein to single-stranded and double-stranded DNA, interaction with Ssb-coated single-stranded DNA without interference with RecA-mediated strand exchange, protection of DNA from exonucleases, and compaction of high molecular weight DNA molecules into tightly condensed forms. Bridging and compaction of sheared DNA by DR0041 protein might have implications in the preservation of damaged DNA templates to maintain genome integrity upon exposure to gamma irradiation. Our results suggest that DR0041 protein is dispensable for growth under standard growth conditions and following gamma irradiation but contributes to protection of DNA during transformation. We discuss the role of DR0041 protein from the perspective of protection of broken DNA templates and functional redundancy.


Deinococcus , Deinococcus/genetics , Deinococcus/radiation effects , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , DNA/metabolism , DNA Repair , DNA, Single-Stranded/metabolism , Bacterial Proteins/chemistry
8.
Nucleic Acids Res ; 51(11): 5547-5564, 2023 06 23.
Article En | MEDLINE | ID: mdl-37070185

Saccharomyces cerevisiae DNA polymerase IV (Pol4) like its homolog, human DNA polymerase lambda (Polλ), is involved in Non-Homologous End-Joining and Microhomology-Mediated Repair. Using genetic analysis, we identified an additional role of Pol4 also in homology-directed DNA repair, specifically in Rad52-dependent/Rad51-independent direct-repeat recombination. Our results reveal that the requirement for Pol4 in repeat recombination was suppressed by the absence of Rad51, suggesting that Pol4 counteracts the Rad51 inhibition of Rad52-mediated repeat recombination events. Using purified proteins and model substrates, we reconstituted in vitro reactions emulating DNA synthesis during direct-repeat recombination and show that Rad51 directly inhibits Polδ DNA synthesis. Interestingly, although Pol4 was not capable of performing extensive DNA synthesis by itself, it aided Polδ in overcoming the DNA synthesis inhibition by Rad51. In addition, Pol4 dependency and stimulation of Polδ DNA synthesis in the presence of Rad51 occurred in reactions containing Rad52 and RPA where DNA strand-annealing was necessary. Mechanistically, yeast Pol4 displaces Rad51 from ssDNA independent of DNA synthesis. Together our in vitro and in vivo data suggest that Rad51 suppresses Rad52-dependent/Rad51-independent direct-repeat recombination by binding to the primer-template and that Rad51 removal by Pol4 is critical for strand-annealing dependent DNA synthesis.


DNA Polymerase beta , Rad51 Recombinase , Rad52 DNA Repair and Recombination Protein , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , DNA/metabolism , DNA Polymerase beta/genetics , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , DNA Repair , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Recombinational DNA Repair , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
9.
J Biochem ; 174(1): 59-69, 2023 Jun 30.
Article En | MEDLINE | ID: mdl-36811351

RAD52 is a single-stranded DNA (ssDNA) binding protein that functions in the repair of DNA double-strand breaks (DSBs) by promoting the annealing of complementary DNA strands. RAD52 may also play an important role in an RNA transcript-dependent type of DSB repair, in which it reportedly binds to RNA and mediates the RNA-DNA strand exchange reaction. However, the mechanistic details of these functions are still unclear. In the present study, we utilized the domain fragments of RAD52 to biochemically characterize the single-stranded RNA (ssRNA) binding and RNA-DNA strand exchange activities of RAD52. We found that the N-terminal half of RAD52 is primarily responsible for both activities. By contrast, significant differences were observed for the roles of the C-terminal half in RNA-DNA and DNA-DNA strand exchange reactions. The C-terminal fragment stimulated the inverse RNA-DNA strand exchange activity displayed by the N-terminal fragment in trans, whereas the trans stimulatory effect by the C-terminal fragment was not observed in the inverse DNA-DNA or forward RNA-DNA strand exchange reactions. These results suggest the specific function of the C-terminal half of RAD52 in RNA-templated DSB repair.


RNA , Humans , DNA/metabolism , DNA Repair , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Protein Binding , Rad51 Recombinase/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , RNA/metabolism
10.
FEBS Open Bio ; 13(3): 408-418, 2023 03.
Article En | MEDLINE | ID: mdl-36707939

The human RAD52 protein, which forms an oligomeric ring structure, is involved in DNA double-strand break repair. The N-terminal half of RAD52 is primarily responsible for self-oligomerisation and DNA binding. Crystallographic studies have revealed the detailed structure of the N-terminal half. However, only low-resolution structures have been reported for the full-length protein, and thus the structural role of the C-terminal half in self-oligomerisation has remained elusive. In this study, we determined the solution structure of the human RAD52 protein by cryo-electron microscopy (cryo-EM), at an average resolution of 3.5 Å. The structure revealed an undecameric ring that is nearly identical to the crystal structures of the N-terminal half. The cryo-EM map for the C-terminal half was poorly defined, indicating that the region is intrinsically disordered. The present cryo-EM structure provides important insights into the mechanistic roles played by the N-terminal and C-terminal halves of RAD52 during DNA double-strand break repair.


DNA-Binding Proteins , DNA , Humans , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Cryoelectron Microscopy , DNA-Binding Proteins/metabolism , DNA/genetics , DNA Repair
11.
J Biol Chem ; 299(1): 102770, 2023 01.
Article En | MEDLINE | ID: mdl-36470428

G-quadruplex (G4)-forming DNA sequences are abundant in the human genome, and they are hot spots for inducing DNA double-strand breaks (DSBs) and genome instability. The mechanisms involved in protecting G4s and maintaining genome stability have not been fully elucidated. Here, we demonstrated that RAD52 plays an important role in suppressing DSB accumulation at G4s, and RAD52-deficient cells are sensitive to G4-stabilizing compounds. Mechanistically, we showed that RAD52 is required for efficient homologous recombination repair at G4s, likely due to its function in recruiting structure-specific endonuclease XPF to remove G4 structures at DSB ends. We also demonstrated that upon G4 stabilization, endonuclease MUS81 mediates cleavage of stalled replication forks at G4s. The resulting DSBs recruit RAD52 and XPF to G4s for processing DSB ends to facilitate homologous recombination repair. Loss of RAD52 along with G4-resolving helicase FANCJ leads to a significant increase of DSB accumulation before and after treatment with the G4-stabilizing compound pyridostatin, and RAD52 exhibits a synthetic lethal interaction with FANCJ. Collectively, our findings reveal a new role of RAD52 in protecting G4 integrity and provide insights for new cancer treatment strategies.


G-Quadruplexes , Rad52 DNA Repair and Recombination Protein , Animals , Humans , DNA Helicases/genetics , DNA Helicases/metabolism , Endonucleases/metabolism , Genomic Instability , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Recombinational DNA Repair/genetics
12.
Nat Commun ; 13(1): 7855, 2022 12 21.
Article En | MEDLINE | ID: mdl-36543802

Some bacteriophage encode a recombinase that catalyzes single-stranded DNA annealing (SSA). These proteins are apparently related to RAD52, the primary human SSA protein. The best studied protein, Redß from bacteriophage λ, binds weakly to ssDNA, not at all to dsDNA, but tightly to a duplex intermediate of annealing formed when two complementary DNA strands are added to the protein sequentially. We used single particle cryo-electron microscopy (cryo-EM) to determine a 3.4 Å structure of a Redß homolog from a prophage of Listeria innocua in complex with two complementary 83mer oligonucleotides. The structure reveals a helical protein filament bound to a DNA duplex that is highly extended and unwound. Native mass spectrometry confirms that the complex seen by cryo-EM is the predominant species in solution. The protein shares a common core fold with RAD52 and a similar mode of ssDNA-binding. These data provide insights into the mechanism of protein-catalyzed SSA.


DNA , Recombinases , Cryoelectron Microscopy , DNA/chemistry , DNA/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Prophages/genetics , Prophages/metabolism , Protein Binding , Rad51 Recombinase/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Recombinases/metabolism
13.
DNA Repair (Amst) ; 120: 103421, 2022 12.
Article En | MEDLINE | ID: mdl-36327799

BRCA-ness phenotype, a signature of many breast and ovarian cancers, manifests as deficiency in homologous recombination, and as defects in protection and repair of damaged DNA replication forks. A dependence of such cancers on DNA repair factors less important for survival of BRCA-proficient cells, offers opportunities for development of novel chemotherapeutic interventions. The first drugs targeting BRCA-deficient cancers, poly-ADP-ribose polymerase (PARP) inhibitors have been approved for the treatment of advanced, chemotherapy resistant cancers in patients with BRCA1/2 germline mutations. Nine additional proteins that can be targeted to selectively kill BRCA-deficient cancer cells have been identified. Among them, a DNA repair protein RAD52 is an especially attractive target due to general tolerance of the RAD52 loss of function, and protective role of an inactivating mutation. Yet, the effective pharmacological inhibitors of RAD52 have not been forthcoming. In this review, we discuss advances in the state of our knowledge of the RAD52 structure, activities and cellular functions, with a specific focus on the features that make RAD52 an attractive, but difficult drug target.


BRCA2 Protein , Ovarian Neoplasms , Humans , Female , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , BRCA1 Protein/metabolism , DNA Repair , Ovarian Neoplasms/genetics , Drug Discovery , Structure-Activity Relationship
14.
FEMS Yeast Res ; 22(1)2022 06 30.
Article En | MEDLINE | ID: mdl-35472165

The breast and ovarian cancer susceptibility genes, BRCA1 and BRCA2, are key players in the homologous recombination (HR) repair pathway and act as tumor suppressors by maintaining genome stability. The yeast Saccharomyces cerevisiae has no BRCA1/2 homolog; however, a number of HR genes are evolutionary conserved between human and yeast. Among them, RAD52 is involved in DNA double strand break (DSB) repair by HR, and promotes genome stability. We previously reported that the heterologous expression of cancer-associated BRCA1/2 missense variants in growing yeast cultures affects both spontaneous HR and gene reversion (GR) suggesting that yeast could be a reliable system to assess the functional impact of variants. Because inhibition of Rad52p is lethal in BRCA1/2 mutated tumors, and Rad52p is conserved between humans and yeast, we asked if the effect of BRCA1/2 variants on HR and GR could be affected by loss of RAD52. We found that the rad52∆ mutation predominantly suppressed the stimulation of HR in yeast by pathogenic BRCA1 variants but also facilitated increased GR by pathogenic variants. Conversely, the rad52∆ mutation stimulated HR by a pathogenic BRCA2 variant in yeast but had no effect on GR. These results demonstrate a functional interplay between the pathogenic BRCA1/2 variants and Rad52p in budding yeast, supporting the use of budding yeast as a suitable system for evaluating potential chemotherapeutic strategies.


Rad52 DNA Repair and Recombination Protein , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , DNA Repair , Genomic Instability , Homologous Recombination , Humans , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
15.
Cell Death Dis ; 13(2): 179, 2022 02 24.
Article En | MEDLINE | ID: mdl-35210412

Many studies have proven that splicing factors are crucial for human malignant tumor development. However, as a classical splicing factor, the expression of SF3B4 is not clear, and its biological function needs to be further clarified in ovarian cancer (OC). We determined that SF3B4 was obviously upregulated and its high expression was associated with poor prognosis in OC patients. In vitro and in vivo assays suggested that SF3B4 overexpression promoted OC cell proliferation and mobility, and downregulation of SF3B4 had the opposite effect. Further studies found that miR-509-3p decreased SF3B4 mRNA expression by binding to the 3' -UTR of SF3B4 directly. Importantly, we revealed that RAD52 was a potential target of SF3B4 through alternative splicing events analysis. Loss of SF3B4 led to decreased expression of RAD52, owing to intron 8 retention and generation of premature termination codons. Moreover, decreased expression of RAD52 partially counteracted the tumor-promoting effect of SF3B4 overexpression. In conclusion, our results suggested that SF3B4, negatively regulated by miR-509-3p, promoted OC progression through effective splicing of RAD52. Therefore, SF3B4 may be a promising biomarker and effective therapeutic target for OC.


MicroRNAs , Ovarian Neoplasms , RNA Splicing Factors , Rad52 DNA Repair and Recombination Protein , 3' Untranslated Regions , Alternative Splicing/genetics , Carcinoma, Ovarian Epithelial/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Ovarian Neoplasms/pathology , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism
16.
Nat Commun ; 13(1): 980, 2022 02 21.
Article En | MEDLINE | ID: mdl-35190531

In B cells, IgD is expressed together with IgM through alternative splicing of primary VHDJH-Cµ-s-m-Cδ-s-m RNAs, and also through IgD class switch DNA recombination (CSR) via double-strand DNA breaks (DSB) and synapse of Sµ with σδ. How such DSBs are resolved is still unknown, despite our previous report showing that Rad52 effects the 'short-range' microhomology-mediated synapsis of intra-Sµ region DSBs. Here we find that induction of IgD CSR downregulates Zfp318, and promotes Rad52 phosphorylation and recruitment to Sµ and σδ, thereby leading to alternative end-joining (A-EJ)-mediated Sµ-σδ recombination with extensive microhomologies, VHDJH-Cδs transcription and sustained IgD secretion. Rad52 ablation in mouse Rad52-/- B cells aborts IgD CSR in vitro and in vivo and dampens the specific IgD antibody response to OVA. Rad52 knockdown in human B cells also abrogates IgD CSR. Finally, Rad52 phosphorylation is associated with high levels of IgD CSR and anti-nuclear IgD autoantibodies in patients with systemic lupus erythematosus and in lupus-prone mice. Our findings thus show that Rad52 mediates IgD CSR through microhomology-mediated A-EJ in concert with Zfp318 downregulation.


Immunoglobulin Class Switching/genetics , Immunoglobulin D/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Animals , B-Lymphocytes , DNA-Binding Proteins/metabolism , Female , Gene Knockdown Techniques , Healthy Volunteers , Humans , Male , Mice , Mice, Knockout , Phosphorylation/genetics , Primary Cell Culture , Rad52 DNA Repair and Recombination Protein/genetics , Recombination, Genetic
17.
Nat Commun ; 13(1): 32, 2022 01 10.
Article En | MEDLINE | ID: mdl-35013185

Replication stress and abundant repetitive sequences have emerged as primary conditions underlying genomic instability in eukaryotes. To gain insight into the mechanism of recombination between repeated sequences in the context of replication stress, we used a prokaryotic Tus/Ter barrier designed to induce transient replication fork stalling near inverted repeats in the budding yeast genome. Our study reveals that the replication fork block stimulates a unique recombination pathway dependent on Rad51 strand invasion and Rad52-Rad59 strand annealing activities, Mph1/Rad5 fork remodelers, Mre11/Exo1/Dna2 resection machineries, Rad1-Rad10 nuclease and DNA polymerase δ. Furthermore, we show recombination at stalled replication forks is limited by the Srs2 helicase and Mus81-Mms4/Yen1 nucleases. Physical analysis of the replication-associated recombinants revealed that half are associated with an inversion of sequence between the repeats. Based on our extensive genetic characterization, we propose a model for recombination of closely linked repeats that can robustly generate chromosome rearrangements.


DNA Helicases/metabolism , DNA Replication , Genomic Instability , Recombination, Genetic , Chromosomes , DEAD-box RNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Exodeoxyribonucleases , Flap Endonucleases , Neoplasms/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism
18.
Mol Cell Biol ; 42(2): e0052421, 2022 02 17.
Article En | MEDLINE | ID: mdl-34928169

Loss of RAD52 is synthetically lethal in BRCA-deficient cells, owing to its role in backup homologous recombination (HR) repair of DNA double-strand breaks (DSBs). In HR in mammalian cells, DSBs are processed to single-stranded DNA (ssDNA) overhangs, which are then bound by replication protein A (RPA). RPA is exchanged for RAD51 by mediator proteins: in mammals, BRCA2 is the primary mediator; however, RAD52 provides an alternative mediator pathway in BRCA-deficient cells. RAD51 stimulates strand exchange between homologous DNA duplexes, a critical step in HR. RPA phosphorylation and dephosphorylation are important for HR, but its effect on RAD52 mediator function is unknown. Here, we show that RPA phosphorylation is required for RAD52 to salvage HR in BRCA-deficient cells. In BRCA2-depleted human cells, in which the only available mediator pathway is RAD52 dependent, the expression of a phosphorylation-deficient RPA mutant reduced HR. Furthermore, RPA-phosphomutant cells showed reduced association of RAD52 with RAD51. Interestingly, there was no effect of RPA phosphorylation on RAD52 recruitment to repair foci. Finally, we show that RPA phosphorylation does not affect RAD52-dependent ssDNA annealing. Thus, although RAD52 can be recruited independently of RPA's phosphorylation status, RPA phosphorylation is required for RAD52's association with RAD51 and its subsequent promotion of RAD52-mediated HR.


DNA Repair/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Staphylococcal Protein A/metabolism , DNA Repair/physiology , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Homologous Recombination/genetics , Humans , Phosphorylation , Rad52 DNA Repair and Recombination Protein/genetics , Recombinational DNA Repair/genetics , Saccharomyces cerevisiae/metabolism
19.
Mol Cell ; 81(24): 4979-4993.e7, 2021 12 16.
Article En | MEDLINE | ID: mdl-34798058

The characteristics of the sleep drivers and the mechanisms through which sleep relieves the cellular homeostatic pressure are unclear. In flies, zebrafish, mice, and humans, DNA damage levels increase during wakefulness and decrease during sleep. Here, we show that 6 h of consolidated sleep is sufficient to reduce DNA damage in the zebrafish dorsal pallium. Induction of DNA damage by neuronal activity and mutagens triggered sleep and DNA repair. The activity of the DNA damage response (DDR) proteins Rad52 and Ku80 increased during sleep, and chromosome dynamics enhanced Rad52 activity. The activity of the DDR initiator poly(ADP-ribose) polymerase 1 (Parp1) increased following sleep deprivation. In both larva zebrafish and adult mice, Parp1 promoted sleep. Inhibition of Parp1 activity reduced sleep-dependent chromosome dynamics and repair. These results demonstrate that DNA damage is a homeostatic driver for sleep, and Parp1 pathways can sense this cellular pressure and facilitate sleep and repair activity.


Behavior, Animal , Brain , DNA Damage , DNA Repair , Neurons , Poly (ADP-Ribose) Polymerase-1 , Sleep , Zebrafish Proteins , Animals , Female , Male , Animals, Genetically Modified , Brain/enzymology , Brain/pathology , Brain/physiopathology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Ku Autoantigen/genetics , Ku Autoantigen/metabolism , Mice, Inbred C57BL , Neurons/enzymology , Neurons/pathology , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/physiology , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Time Factors , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
20.
J Nanobiotechnology ; 19(1): 370, 2021 Nov 17.
Article En | MEDLINE | ID: mdl-34789290

BACKGROUND: Nickel nanoparticles (Nano-Ni) are increasingly used in industry and biomedicine with the development of nanotechnology. However, the genotoxic and carcinogenic effects of Nano-Ni and the underlying mechanisms are still unclear. METHODS: At first, dose-response (0, 10, 20, and 30 µg/mL) and time-response (0, 3, 6, 12, and 24 h) studies were performed in immortalized normal human bronchial epithelial cells BEAS-2B to observe the effects of Nano-Ni on DNA damage response (DDR)-associated proteins and the HIF-1α/miR-210/Rad52 pathway by real-time PCR or Western blot. Then, a Hsp90 inhibitor (1 µM of 17-AAG, an indirect HIF-1α inhibitor), HIF-1α knock-out (KO) cells, and a miR-210 inhibitor (20 nM) were used to determine whether Nano-Ni-induced Rad52 down-regulation was through HIF-1α nuclear accumulation and miR-210 up-regulation. In the long-term experiments, cells were treated with 0.25 and 0.5 µg/mL of Nano-Ni for 21 cycles (~ 150 days), and the level of anchorage-independent growth was determined by plating the cells in soft agar. Transduction of lentiviral particles containing human Rad52 ORF into BEAS-2B cells was used to observe the role of Rad52 in Nano-Ni-induced cell transformation. Nano-Ni-induced DNA damage and dysregulation of HIF-1α/miR-210/Rad52 pathway were also investigated in vivo by intratracheal instillation of 50 µg per mouse of Nano-Ni. gpt delta transgenic mice were used to analyze mutant frequency and mutation spectrum in mouse lungs after Nano-Ni exposure. RESULTS: Nano-Ni exposure caused DNA damage at both in vitro and in vivo settings, which was reflected by increased phosphorylation of DDR-associated proteins such as ATM at Ser1981, p53 at Ser15, and H2AX. Nano-Ni exposure also induced HIF-1α nuclear accumulation, miR-210 up-regulation, and down-regulation of homologous recombination repair (HRR) gene Rad52. Inhibition of or knocking-out HIF-1α or miR-210 ameliorated Nano-Ni-induced Rad52 down-regulation. Long-term low-dose Nano-Ni exposure led to cell malignant transformation, and augmentation of Rad52 expression significantly reduced Nano-Ni-induced cell transformation. In addition, increased immunostaining of cell proliferation markers, Ki-67 and PCNA, was observed in bronchiolar epithelial cells and hyperplastic pneumocytes in mouse lungs at day 7 and day 42 after Nano-Ni exposure. Finally, using gpt delta transgenic mice revealed that Nano-Ni exposure did not cause increased gpt mutant frequency and certain DNA mutations, such as base substitution and small base insertions/deletions, are not the main types of Nano-Ni-induced DNA damage. CONCLUSIONS: This study unraveled the mechanisms underlying Nano-Ni-induced cell malignant transformation; the combined effects of Nano-Ni-induced DNA damage and DNA repair defects through HIF-1α/miR-210/Rad52 pathway likely contribute to Nano-Ni-induced genomic instability and ultimately cell transformation. Our findings will provide information to further elucidate the molecular mechanisms of Nano-Ni-induced genotoxicity and carcinogenicity.


Cell Transformation, Neoplastic/drug effects , DNA Damage/drug effects , Metal Nanoparticles , MicroRNAs/genetics , Nickel , Animals , Cell Line , DNA Repair/drug effects , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Nickel/chemistry , Nickel/toxicity , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism
...